Continued fractions and number-theoretic computations
نویسندگان
چکیده
منابع مشابه
Continued Fractions and Class Number Two
We use the theory of continued fractions in conjunction with ideal theory (often called the infrastructure) in real quadratic fields to give new class number 2 criteria and link this to a canonical norm-induced quadratic polynomial. By doing so, this provides a real quadratic field analogue of the well-known result by Hendy (1974) for complex quadratic fields. We illustrate with several example...
متن کاملErgodic Computations with Continued Fractions and Jacobi ' s Algorithm
Ergodic computational aspects of the Jacobi algorithm, a generalization to two dimensions of the continued fraction algorithm, are considered. By means of such computations the entropy of the algorithm is estimated to be 3.5. An approximation to the, invariant measure of the transformation associated with the algorithm is obtained. The computations are tested by application to the continued fra...
متن کاملPeriodic Continued Fractions And
We investigate when an algebraic function of the form φ(λ) = −B(λ)+ √ R(λ) A(λ) , where R(λ) is a polynomial of odd degree N = 2g + 1 with coefficients in C, can be written as a periodic α-fraction of the form
متن کاملContinued Fractions and Gaps
Given a continued fraction, we construct a certain function that is discontinuous at every rational number p/q. We call this discontinuity the “gap”. We then try to characterize the gap sizes, and find, to the first order, the size is 1/q2, and that, for higher orders, the gap appears to be perfectly ’randomly’ distributed, in that it is Cauchy-dense on the unit square, and thus, this function ...
متن کاملGeneralized Continued Logarithms and Related Continued Fractions
We study continued logarithms as introduced by Bill Gosper and studied by J. Borwein et. al.. After providing an overview of the type I and type II generalizations of binary continued logarithms introduced by Borwein et. al., we focus on a new generalization to an arbitrary integer base b. We show that all of our so-called type III continued logarithms converge and all rational numbers have fin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 1985
ISSN: 0035-7596
DOI: 10.1216/rmj-1985-15-2-621